david의 CS Blog 자세히보기

2025/01/04 2

[Machine Learning] 2. Linear Regression(선형 회귀)

회귀와 분류   머신러닝의 분류 체계는 지도학습(supervised learning), 비지도학습(unsupervised learning), 강화학습(reinforcement learning)으로 구분된다. 특히 지도학습은 정답(레이블, target variable)이 존재하는 데이터에서의 머신러닝이다.지도학습은 회귀(regression)와 분류(classification)으로 구분되는데, 회귀는 label이 numerical value(정량적인 숫자)이고 분류는 label이 categorical value(비정형적인 클래스)이다.   지도학습설명예시회귀(Regression)예측하고자 하는 값이 실수인 경우공부 시간에 따른 수학 시험 성적(실수) 예측분류(Classification)예측하고자 하는 값이 ..

[Machine Learning] 1. 데이터의 분석 : 데이터 전처리

데이터(Data)  데이터는 현대 사회에서 가장 중요한 자원 중 하나로 자리잡고 있다. 예를 들어 기업은 데이터에 기반한 의사결정을 통해 회사 고유의 경쟁력을 강화하고, 연구자들은 데이터 분석을 통해 새로운 인사이트를 얻으며, 데이터 분석의 보편화로 개인들도 데이터 기반 도구를 활용해 일상생활 속 여러 문제를 개선하고 있다. 하지만 데이터는 그 자체로서의 가치를 가지기 보다, 올바르게 가공되거나 정제될 때 그 가치가 드러난다.   데이터는 일상 혹은 연구 상황 등에서 마주할 수 있는 관찰 가능한 모든 정량적, 비정량적 수치를 포함한다. 좁은 의미로는 병원에서의 환자 건강 수치나 CT 이미지 데이터 등이 데이터가 될 수 있으며, 광범위하게는 여러 통계 자료를 포함하기도 한다. 본 글에서 초점을 맞추는 부분..